
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 11, NOVEMBER 2016 3205

Real-Time Vehicle Make and Model Recognition
Based on a Bag of SURF Features

Abdul Jabbar Siddiqui, Abdelhamid Mammeri, and Azzedine Boukerche, Fellow, IEEE

Abstract—In this paper, we propose and evaluate unexplored
approaches for real-time automated vehicle make and model
recognition (VMMR) based on a bag of speeded-up robust features
(BoSURF) and demonstrate the suitability of these approaches for
vehicle identification systems. The proposed approaches use SURF
features of vehicles’ front- or rear-facing images and retain the
dominant characteristic features (codewords) in a dictionary. Two
schemes of dictionary building are evaluated: “single dictionary”
and “modular dictionary.” Based on the optimized dictionaries, the
SURF features of vehicles’ front- or rear-face images are embed-
ded into BoSURF histograms, which are used to train multiclass
support vector machines (SVMs) for classification. Two real-time
VMMR classification schemes are proposed and evaluated: a sin-
gle multiclass SVM and an ensemble of multiclass SVM based
on attribute bagging. The processing speed and accuracy of the
VMMR system are affected greatly by the size of the dictionary.
The tradeoff between speed and accuracy is studied to determine
optimal dictionary sizes for the VMMR problem. The effectiveness
of our approaches is demonstrated through cross-validation tests
on a recent publicly accessible VMMR data set. The experimental
results prove the superiority of our work over the state of the art,
in terms of both processing speed and accuracy, making it highly
applicable to real-time VMMR systems.

Index Terms—Intelligent surveillance, vehicle classification, in-
telligent transportation.

I. INTRODUCTION

AUTOMATED Vehicle Make and Model Recognition
(VMMR) systems is an area of great interest in numerous

Intelligent Transportation Systems (ITS) applications. The most
significant applications of VMMR for ITS includes automated
vehicular surveillance in specific areas that are highly vulner-
able to security threats, such as parking lots of public spaces
(e.g., malls, stadiums or airports). Another important applica-
tion of VMMR is related to situations in which the police are
searching for a specific vehicle type, make, or model. Other
applications include traffic studies and analyses. In this work,
we propose Bag of Speeded Up Robust Features (BoSURF)-
based approaches for automated VMMR, building on the Bag-
of-Features framework [1] for representing vehicles’ front or
rear views as captured by commonly used 2D vision cameras.
Traditional vehicle identification systems recognize makes and
models of vehicles relying on manual human observations or

Manuscript received July 26, 2015; revised December 31, 2015; accepted
March 11, 2016. Date of publication April 25, 2016; date of current version
October 28, 2016. The Associate Editor for this paper was Z. Duric.

The authors are University of Ottawa, Ottawa, ON K1N6N5, Canada
(e-mail: asidd074@uottawa.ca; amammeri@uottawa.ca; boukerch@site.
uottawa.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2016.2545640

Fig. 1. From left to right: Some cases in which VMMR systems based on
license plates can fail due to ambiguity, forgery, damage, or license-plate
duplication.

license plate recognition systems, barely meeting real-time con-
straints, for instance [2]. Both approaches are failure-prone and
have several limitations. First, it is difficult in a practical sense
for human observers to remember and efficiently distinguish
between the wide variety of vehicle makes and models. Second,
it becomes a laborious and time-consuming task for a human
observer to monitor and observe a multitude of screens and
record the incoming or outgoing makes and models, or to even
spot the make and model being searched for [3] and [4]. On
the other hand, the VMMR systems that rely on license plates
suffer from the following disadvantages. License plates can
easily be forged, damaged, modified, or occluded, as depicted
in Fig. 1. This can prevent VMMR systems from detection and
recognition of vehicles and their make and model. Also, there
are some license plates that can be ambiguous (e.g., between
“0” and “O”), as shown in the left of Fig. 1. Moreover, in
some areas, it may not be necessary to display the license plate
at the front or rear. If the license plates recognition system
is not equipped to check for license plates at both (front and
rear) views of the vehicle, it could fail. So, when license plate
recognition systems fail to accurately read the detected license
plates due to the above issues, the wrong make and model
information could be retrieved from the license plate registry
or database.

To overcome the above shortcomings in traditional vehi-
cle identification systems, automated VMMR techniques have
recently gained attention, but without considering processing
speed as the primary factor [3] and [4]. The make and model
of the vehicle recognized by the VMMR system can be cross-
checked with the license plate registry to screen for fraud.
In this way, automated VMMR systems augment traditional
license plate recognition-based vehicle identification systems
to further enhance security.

We tackle the problem of real-time vehicle make and model
recognition as a challenging multi-class classification problem.
In this work, a “class” refers to a vehicle make and model
(Eg: Toyota Altis, Toyota Camry, Nissan Xtrail are three dif-
ferent classes). There are two broad categories of challenges
in VMMR: (1) “Multiplicity,” and (2) “Ambiguity” [5]. The
multiplicity problem occurs when a vehicle model (of the same

1524-9050 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3206 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 11, NOVEMBER 2016

Fig. 2. Multiplicity problems with (a)–(c) Toyota Wish and (d)–(f) Honda CRV
in the NTOU-MMR data set [6]. The multiplicity problem means one vehicle
MM often displays different shapes on the road. (a) T Wish 2010. (b) T Wish
2009. (c) T Wish 2005. (d) H CRV 2003. (e) H CRV 2005. (f) H CRV 2009.

Fig. 3. Intermake ambiguity problems between (a) and (b), (c) and (d), and
(e) and (f) in the NTOU-MMR data set of [6]. “T,” “N,” and “F” stand for
“Toyota,” “Nissan,” and “Ford,” respectively. The ambiguity problem refers to
the case where vehicles manufactured by different companies have comparable
shapes. (a) T Camry 2005. (b) N Cefiro 1999. (c) T Tercel 2005. (d) N Sentra
2003. (e) T Camry 2006. (f) F Mondeo 2005.

Fig. 4. Intramake ambiguity problems between (a) and (b), (c) and (d), (c) and
(e), and (e) and (f) in the NTOU-MMR data set of [6]. “N” and “T” stand
for “Nissan” and “Toyota,” respectively. Intramake ambiguity results when
different vehicles (models) from the same company (make) have a comparable
shape or appearance. (a) N Sentra 2003. (b) N Cefiro 1997. (c) T Altis 2008.
(d) T Camry 2008. (e) T Camry 2006. (f) T Altis 2006.

make) has different shapes. Fig. 2 shows some examples of the
multiplicity problem in NTOU-MMR Dataset [6]. We further
classify the ambiguity problem into two categories: (a) “Inter-
Make Ambiguity,” and (b) “Intra-Make Ambiguity.” The former
ambiguity refers to the issue of vehicles (models) of different
companies (makes) having a visually comparable shape or
appearance, which might lead to confuse between vehicles, i.e.,
two different make-model classes have comparable front/rear
views (See Fig. 3). The latter type of ambiguity results when
different vehicles (models) from the same company (make)
have a comparable shape or appearance. For example, the
“Altis” and “Camry” models of the “Toyota” make have com-
parable front faces (See Fig. 4).

Fig. 5. General architecture of VMMR systems.

Fig. 6. Flowchart of the MMR module of VMMR systems.

To address the above-mentioned challenges in VMMR, the
major contributions of this work on vehicle make and model
recognition are summarized as follows with an objective of
achieving a processing speed of at least 7 fps to meet real-
time requirements while having an accuracy of around 95%:
(1) Unexplored approaches for VMMR are proposed and eval-
uated based on the BoSURF framework, in which the dominant
features of all makes and models are learned and represented in
an optimized dictionary; (2) Two schemes for Dictionary Build-
ing are studied and evaluated to address the multiplicity and
ambiguity problems of VMMR: (a) the “Single-Dictionary,”
and (b) the “Modular-Dictionary”; (3) The optimal dictionary
sizes for VMMR are recommended by studying their effect on
processing speed and accuracy, as shown in Section VIII-A;
(4) Two real-time classification schemes are proposed and eval-
uated: (a) Single Multi-Class SVM Classifier (SVM) and (b) At-
tribute Bagging based Ensemble of SVM Classifiers (AB-SVM),
in order to simultaneously learn the inter-class differences (to
solve inter-make and intra-make ambiguity issues) and the
intra-class similarities (to solve the multiplicity issues); (5) The
effectiveness and superiority of our BoSURF approaches for
VMMR are validated on random training-testing dataset splits
of NTOU-MMR Dataset [5].

The remainder of the paper is organized as follows. We give
an overview of the related state-of-the-art VMMR works in
Section II, and discuss their limitations. The target environment
and dataset used to demonstrate the effectiveness of our ap-
proaches are described in Section III. The description of the pro-
posed BoSURF approaches is provided inSection IV. Section V
explains the two dictionary building schemes proposed in this
work for VMMR. Then, Section VI presents the method by
which BoSURF features are formed using the learned dictio-
naries. The two real-time classification schemes we propose
for VMMR are presented in Section VII. After describing the
experimental setup and the performance metrics in Section VIII,
we present the results and discussions in Section IX. Finally,
Section X provides the conclusions and future work.

II. RELATED WORK

The problem of automated vehicle make and model recog-
nition is an important task for vehicular surveillance and
other ITS applications. We provide the general architecture
of VMMR systems in Fig. 5. The two main modules are:
(A) Vehicle “Detection,” and (B) “Make and Model Recogni-
tion” (MMR). The MMR module is comprised of three steps:
(1) Features Extraction, (2) Global Features Representation,
and (3) Classification, as shown in Fig. 6.

SIDDIQUI et al.: REAL-TIME VMMR BASED ON A BAG OF SURF FEATURES 3207

TABLE I
SUMMARY OF FEATURES EXTRACTION, GLOBAL FEATURES

REPRESENTATION, AND CLASSIFICATION APPROACHES

IN VMMR WORKS

In this section, we provide an overview of works completed
on the different modules of VMMR systems (See Table I).
Since our work is focused on developing and evaluating im-
proved approaches for the Global Features Representation
and Classification steps of the MMR module, we provide a
comprehensive discussion of related works in the context of
these steps.

A. Vehicle Detection

The problem of detecting vehicles in image sequences from
surveillance cameras has been well investigated by many re-
searchers. The objective of vehicle detection approaches is to
find a vehicle Region of Interest (ROI) over the given image,
such that it outlines the vehicle (or vehicle’s front/rear face)
by filtering out the background regions. The VMMR modules
can then work on these ROIs instead of the whole image, which
could otherwise decrease the VMMR accuracy. As the objective
of this work is to achieve a VMMR module that can augment
traditional license plate recognition-based vehicle identification
systems, we choose to use the detected license plates as a cue
to define the vehicle ROIs. Any real-time and robust license
plate detection technique such as [7] can be integrated with our
VMMR module. License-plate recognition systems are highly
failure-prone; license plate detection techniques, on the other
hand, have been proven to be highly robust to different light-
ing conditions and have the advantages of higher processing
speed, lower computational complexity and minimal failure
cases [8].

B. Features Extraction and Global Features Representation

To describe the vehicle makes and models, various local fea-
tures are extracted from the vehicle ROIs (Features Extraction),
with or without embedding them into Global Features Repre-
sentations. Works such as [4] use raw image features like Scale
Invariant Feature Transform (SIFT [9]) to describe make-model
instances. In fact, SIFT has been used by many VMMR works
such as [4], [5], [10]–[12]. Due to the high dimensionality and
relatively slow computational speed of SIFT, some works have
adopted the Speeded Up Robust Features (SURF [13]) (e.g.,
[5], [10]) and the Histogram of Oriented Gradients (HOG [14])
(e.g., in [5] and [15]). Other features based on edges, gradients
or corners (e.g., by [2], [3], [16]), and MPEG-7 descriptors
such as Edge Histograms [17], [18] (e.g., by [10]) were also
explored for VMMR purposes. In most approaches, the raw
features are embedded into global representations of vehicle
makes and models ([3], [5], [10], [12], [15]) as shown in Table I.
Some works (such as [12]) refer to the global representations as
Mid Level Representation (MLR). The quality of a global
features representation technique is assessed by its process-
ing speed, computational complexity in forming the holis-
tic representations, and VMMR accuracy, which reflects its
discriminative power in representing the different makes and
models while generalizing over the multiplicity issues within a
make-model class.

Edge images of vehicles’ faces have been considered in [3] as
numerical feature vectors. Pearce and Pears [2] concatenate the
Square-Mapped Gradients (SMG) or Locally Normalised Har-
ris Strengths (LNHS) as global feature vectors for the images.
Varjas and Tanacs [19] also used concatenated SMG. The SMG-
based techniques require well-aligned ROIs with strictly frontal
views, or planar projection of skewed views onto frontal-like
views. However, as we demonstrate later in the paper, our
approaches are greatly successful in achieving a highly accurate
VMMR system even under a wide range of viewpoints (or
vehicle orientations) without requiring projection onto perfectly
frontal views.

A grid-based global representation of features is proposed by
Hsieh et al. [5], who group the SURF features extracted from
frontal vehicle faces in a grid-wise fashion. Chen et al. [15],
[20] proposed a grid-based concatenation of HOG features from
the vehicle images into a global ensemble representation. Using
their dataset, we prove that the performance of our approaches
is superior. Certain works, such as [21], use the positions and
sizes of car emblems (model symbol, trim level, etc.) and
HOG features of emblem regions to classify vehicle models,
assuming the make is known. However, it is unclear if their
approach can achieve both make and model recognition.

Baran et al. [10] use local features like SURF to build a
dictionary, which is used to represent vehicle images as sparse
vectors of occurrence counts of the words of a dictionary. In
contrast to their work, we investigate optimal dictionary build-
ing parameters in the context of VMMR challenges, through
two schemes of dictionary building. Amongst the most recent
works on VMMR is that of Fraz et al. [12]. They form a lexicon
that is comprised of all training images’ features as words. The
words of the lexicon are computed based on a Fisher Encoded

3208 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 11, NOVEMBER 2016

Mid-Level-Representation (MLR) of image features such as
SIFT. Their MLR construction is computationally expensive,
reported to consume about 0.4 s per image, and hence unsuit-
able for real-time VMMR. Unlike [12], we learn a dictionary
by retaining only the dominant features of training images as
codewords, and not all the features.

C. Classification Approaches

In the literature, there have been various classification ap-
proaches proposed for VMMR based on the local features
and/or global features representations of the make-model
classes. For example, [4] and [11] employed a simple brute-
force matching scheme using raw SIFT features to match query
images to the gallery images. The brute-force pattern matching
approach is very time consuming, and hence unsuitable for
real-time VMMR. On the other hand, Munroe and Madden
[3] use machine learning algorithms such as C4.5 Decision
Trees, k-Nearest Neighbors (kNN), and Feed-forward Neural
Networks as classifiers for VMMR. He et al. [16] built an
ensemble of neural networks for classification and also tested
kNN, AdaBoost, and SVM. However, such approaches based
on edges from images suffer greatly in cases of occlusions, and
hence are not applicable in real-life scenarios [3].

In [2], kNN and Naive Bayes classifiers were tested with a
variety of features. A kNN-based classification scheme was also
used by Varjas and Tanacs [19], but with a correlation-based
distance metric. In these approaches, accuracy is degraded
when ROIs are even slightly different than ground truth ROIs.
The degradation in accuracy is due to the inefficiency of corner-
and gradient-responses based global feature vectors for the
VMMR problem. The classification scheme adopted in [12]
includes matching a probe words of images with the gallery of
lexicons in a brute-force manner. Such an exhaustive match-
ing scheme makes their approach inapplicable to real-time
VMMR systems.

Baran et al. [10] utilized a simple multi-class SVM trained
over sparse occurrence vectors. However, they did not in-
vestigate optimization of the dictionaries for VMMR. Unlike
them, we propose optimized dictionaries and two SVM-based
classification schemes that are designed to solve VMMR issues.
Moreover, the superiority of our approaches is proven by using
a more challenging dataset. Hsieh et al. [5] employ a grid-wise
ensemble of SVM classifiers, each of which is trained over
SURF features from a specific grid-block over frontal vehicle
faces. On the other hand, Chen et. al. [15], [20] propose a clas-
sification approach for VMMR, based on sparse representation
and Hamming Distance.

In spite of the various works that have been published on
the theme of VMMR, the multiplicity and ambiguity problems
are yet to be solved, perhaps through more representative and
discriminating global features representation techniques. Many
works rely on strictly frontal view images of cars, and use
images with very negligible variation in scale, rotation, and
orientation of vehicles. Another major challenge is the lack of
a proper benchmark dataset for VMMR. Most studies evaluate
their approaches and report the results based on private datasets,
which prevents us from comparing our work to theirs. These

Fig. 7. Examples of the targeted environment where VMMR is needed (Gates
of a cross-border checkpoint) to be used by the VMMR systems.

datasets have several issues that interfere with the reliability
and conviction of their performance results. Apart from the
unbalanced nature of the datasets, the images are not partitioned
into training and testing subsets using any of the standard
procedures followed in image classification works. Unlike the
related works, to prove the effectiveness of our approaches,
we randomly partition the dataset repeatedly into different
training and testing subsets a number of times, and average our
accuracies across them.

III. TARGET ENVIRONMENT & DATASET DESCRIPTION

To demonstrate the effectiveness of the proposed BoSURF
approaches for VMMR, we target scenarios such as the en-
trances or exits of parking facilities at public places such as
malls, airports, stadiums, etc. (See Fig. 7). Such public areas are
highly vulnerable to security threats. The camera(s) are fixed
on the entrance(s)/exit(s) of a given parking facility. Vehicles
may be occluded by pedestrians or other objects. The proposed
approaches for VMMR can be easily applied to other scenarios
in which the camera is not fixed, e.g., an on-board camera on a
mobile surveillance vehicle, etc.

The above characteristics of the target environment are
closely represented by the NTOU-MMR dataset [6], which is a
very recent and publicly available dataset for vehicle makes and
models with published results of several MMR works. Hence,
it serves as a good benchmark dataset to compare performances
of our approach with other works. In what follows, we further
describe the dataset and note a few problems therein.

Published in the recent related work of Hsieh et al. [5], the
NTOU-MMR dataset was collected under the Vision-based In-
telligent Environment (VBIE) project [22] and can be accessed
at [6]. Speeds of up to 65 km/h were allowed for the oncoming
vehicles. The original dataset is divided into a training and a
testing set collected in different weather conditions as explained
bellow. There are 2,846 images for training, and 3,793 images
for testing. The total number of classes is 29.

The motivation to use this dataset in our work stems from
the following characteristics of the dataset. The images have
vehicles in different viewing angle pans ranging from −20◦ to
20◦, which sufficiently represent real-life scenarios. Moreover,
the images of the dataset were taken throughout the daytime
and night-time, and under weather conditions varying between
sunny, cloudy and rainy. In addition, there are also images with
vehicles occluded by irrelevant objects (such as pedestrians).
As we shall present in Section IX, the effectiveness of our

SIDDIQUI et al.: REAL-TIME VMMR BASED ON A BAG OF SURF FEATURES 3209

Fig. 8. Overview of our BoSURF approach for VMMR.

approaches can be proven even in such challenging scenarios
(See Fig. 17).

However, we note some problems with the NTOU-MMR
dataset (downloaded from [6]: (1) Wrongly placed images:
some class directories have images belonging to other classes,
(2) Duplicated images: many classes have duplicate images
(with different names), (3) Biased partitioning of training and
testing data: it is unclear which strategy is employed to parti-
tion data into training and testing for each class. The manner
in which data is partitioned into training and testing greatly
impacts performance results. A biased partitioning can give
misleading results of the accuracy, as we demonstrate in Fig. 14
(Section IX-D).

IV. OVERVIEW OF BOSURF-MMR

The BoSURF-MMR module proposed in this paper is illus-
trated in Fig. 8. We extract SURF features [13] from train-
ing samples of all classes and retain the dominant ones in a
“bag” or dictionary, hence the name Bag-of-SURF (BoSURF).
Note that we have employed the 64-dimensional SURF. The
dictionary is then used to represent the vehicles’ images as
BoSURF histograms. Our work is inspired by the popular
Bag-of-Features (BoF) framework [1], [23] which has been
widely used to describe objects of interest using their raw image
features embedded into global representations. The BoF has
been very successful and widely adopted in the works on object
recognition [24], scene classification [25], image classification
[26], and image retrieval [27], [28], etc. However, to the best
of our knowledge, BoF has not been extensively studied in
the context of VMMR. Encouraged by the success of BoF in
the aforementioned works, we propose and evaluate BoSURF-
based approaches for the VMMR module.

There are three main steps involved in the proposed
BoSURF approaches for VMMR, as shown in Fig. 8: (1) Offline
Dictionary Building (See Section V), (2) BoSURF Features
Representation (See Section VI) and (3) Classification (See
Section VII).

In this work, we investigate two dictionary building schemes
in the context of real-time VMMR: (1) Single Dictionary (SD)
(See Section V-A), and (2) Modular Dictionary (MD) (See
Section V-B). The SD is based on the standard method of
dictionary building in the BoF framework, in which dictionary
codewords are learned from the collective pool of training
data (i.e., of local image features) from all combined classes.
The MD, on the other hand, is composed of many individual
dictionaries, each corresponding to a make-model class. The
codewords of each such sub-dictionary are learned from the
training data of the respective make-model class.

In Features Extraction, SURF has gained wide popularity
in many computer vision applications. It has been shown to
have higher accuracy and speed in comparison to other feature
descriptors in the context of object recognition, image clas-
sification, etc. [13]. Both the Offline Dictionary Building and
the BoSURF Features Representation steps rely on local image
features such as SURF [13]. In fact, SURF can be easily re-
placed with any good feature descriptor in our BoSURF MMR
module. We had also explored using Scale-Invariant Feature
Transform (SIFT) instead of SURF, but the results were not
encouraging. This is due to high dimensionality and relatively
slow computational speed of SIFT. Hence, we choose to employ
the SURF features as the building blocks of our BoSURF-based
approaches for VMMR. To build the BoSURF representations
from SURFs of vehicle ROIs, SD or MD are used.

The BoSURF representations from different vehicle makes
and models are then used to train multi-class classifiers to be
used in VMMR testing. We present and evaluate two multi-
class classification schemes for VMMR: (1) Single Multi-Class
SVM Classifier, referred to as SVM (See Section VII-A), and
(2) Attribute Bagging based Ensemble of Multi-Class SVM
Classifiers, referred to as AB-SVM (See Section VII-B).

V. OFFLINE DICTIONARY BUILDING

The training images of all classes are used to extract their
SURF features [13]. The dominant features (codewords) are
then retained in a “bag” or dictionary. We capture and describe
the overall appearance of the front or rear face for each vehicle
make and model using the built dictionary. The dictionary
can be considered as a compact representation comprised of
the dominant features (codewords) from training images of
all classes. The vehicles’ images are represented as BoSURF
features which are histograms of occurrences of the dictionary
codewords. Building the dictionary is usually done offline and
only when needed, so that it may be used in the training and
testing phases. The two dictionary schemes evaluated in this
work are described in this section. An overview of the SD and
MD schemes is depicted in Fig. 9(a) and (b) respectively.

Let I represent the set of training images for Nc number of
classes as shown in Equation (1), where Ii represents the set of
training images of class i in the dataset being used.

I = {I1, I2, . . . , INc
} . (1)

From each j-th image in Ii, we extract its set of SURF
features, Fji, as represented in Equation (2):

Fji =
{
f1, f2 . . . , fpji

}
(2)

3210 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 11, NOVEMBER 2016

Fig. 9. Offline dictionary building. (a) Single-dictionary building scheme and (b) modular dictionary building scheme of our BoSURF-MMR.

Algorithm 1: Offline dictionary building

where fpji
is the p-th SURF feature in image-j and pji is the

number of SURF features extracted from the j-th image of
class i.

The pool of features from images of all classes is represented
by F in Equation (3):

F = {F1,F2, . . . ,FNc
} . (3)

A. Single Dictionary (SD)

To build the SD (denoted by D), dominant features are
selected by performing clustering on F. For that purpose,
Kmeans++ clustering technique is used because it yields an
optimal solution compared to KMeans. This involves group-
ing the training features into a number of clusters of similar
patterns. The most commonly used clustering techniques are:
K-Means, K-Means++, and Meanshift [29].

The cluster centres are the selected dominant features that
make up the dictionary, and are referred to as the visual words,
or codewords, represented by cwk in Equation (4) (further
described in Section VIII-A). The number of selected dominant
features are determined in Section VIII. The number of clusters
(or codewords) determines the overall Dictionary Size, SD.

See Fig. 9(a) for an overview of the SD scheme. We refer to the
BoSURF approach based on the SD scheme as BoSURF-SD.

D = {cwk|k = 1, . . . , SD}. (4)

B. Modular Dictionary (MD)

In this second scheme of dictionary building, we build the
main dictionary (denoted by DM) by combining individual
dictionaries of each class, motivated by the results of [29]. The
intuition behind this scheme is that, in the Single Dictionary
scheme, several distinct features could be clustered under the
same codeword due to their closeness. More importantly, hav-
ing a modular dictionary greatly reduces the time consumed
in dictionary building and also provides flexibility. If classes
need to be added (removed), their respective dictionaries can
be flexibly appended (deleted) to (from) the main dictionary
without requiring a reconstruction the entire dictionary, thus
saving a considerable amount of time. The Modular Dictionary
(DM) is formed as:

DM = {Di|i = 1, 2, . . . , Nc} (5)

DM = {cwk|k = 1, . . . , (SDi ·Nc)} (6)

where each Di is the individual dictionary of class i, built by
retaining SDi dominant features (codewords) out of Fi by the
similar clustering procedure as mentioned in Section V-A. The
size of the overall dictionary DM, and hence the number of
codewords (cwk), is then SD = SDi ·Nc. See Fig. 9(b) for an
overview of the MD scheme. The BoSURF-MMR approach
based on the MD scheme is referred to as BoSURF-MD.

C. Size of the Dictionary

The dictionary size (SD) is an important parameter that
affects processing speed, discriminative capacity and general-
izability of the built dictionary, and hence affects the overall
performance of the BoSURF approach. A small dictionary
could suffer due to reduced discriminatory capacity. In small
dictionaries, more than one feature could get assigned to the
same cluster, despite being different. On the other hand, a
large dictionary loses capacity for generalization, adds higher

SIDDIQUI et al.: REAL-TIME VMMR BASED ON A BAG OF SURF FEATURES 3211

penalties to noises, and increases processing overhead [30]. As
a contribution of this work, we study the effect of various dic-
tionary sizes (for both SD and MD schemes) on overall VMMR
speed and accuracy (further described in Section VIII-A).

VI. BOSURF FEATURES REPRESENTATION

The second step uses the dictionaryD or DM to embed given
images’ local features into global BoSURF representations
through Features Quantization (See Fig. 8). For a given image
Ij of class i, its BoSURF features representation is a histogram
Hij , of votes to the dictionary codewords. The histogram Hij

can be represented by (See Fig. 8):

Hij = {hk|k = 1, . . . , SD} (7)

where the bins (hk) hold the number of votes to the respective
codewords (cwk), respectively. To build the BoSURF features
representation (histogram) of image Ij , each SURF feature fpji

from Ij is matched to its nearest codeword cwk of the dictionary
(D or DM), and the corresponding histogram bin hk vote-
count is incremented. This step is also referred to as Features
Quantization. In this manner, we obtain the final histogram after
matching all features of a given image, and we call it a BoSURF
histogram or feature. The BoSURF histogram for the set of
SURF features Fji of a given image Ij of class i is computed
as follows:

Hij(k) =
1
pji

pji∑
p=1

⎧⎨
⎩

1 if k = argmin
t∈[1,SD]

dist
(
cwt, fpji

)

0 otherwise
(8)

where dist(a, b) is the euclidean distance between features a
and b, and Hij(k) = hk; fpji

is the pth SURF feature and pji is
the number of SURF features extracted from the image Ij .

VII. CLASSIFICATION

The third step includes training a classifier over the BoSURF
features of all training images, to be used subsequently in
VMMR testing. In this work, we propose two multi-class
Support Vector Machine (SVM)-based classification schemes
for VMMR. The SVM [31], [32] is a very effective binary
classifier in which the support vectors are a subset of the
training data samples representing the best separation between
two classes. A test data sample is classified based on its distance
from these support vectors. A collection of many such binary
classifiers are used to build a single multi-class SVM classifier.
We have conducted extensive cross-validation experiments to
find the optimal SVM parameters, because the datasets are
usually unbalanced (see Section VIII). The two approaches
for multi-class classifier training and testing presented are:
(A) Single Multi-Class SVM Classifier (referred to as SVM),
and (B) Ensemble of Multi-class SVM Classifiers based on
Attribute Bagging (referred to as AB-SVM).

A. Single Multi-Class SVM Classifier

For each training image of given classes in the training phase,
SURF features are extracted and embedded into the BoSURF

histograms using the Single Dictionary (or the Modular Dictio-
nary), as described in Section VI. These BoSURF histograms
from all training images are collected and used to train the
multi-class SVM classifier. For testing, the BoSURF histogram
of the given test image is generated using the same dictionary
used in training. Based on this histogram, each of the binary
classifiers that make up the multi-class SVM adds a vote to its
predicted class. The class with the highest votes is assigned as
the predicted make-model class of the test image.

B. Ensemble of Multi-Class SVM Classifiers Based on
Attribute Bagging

Instead of training a single classifier over the entire set of
feature vectors, we explore the idea of building an ensemble of
individual multi-class classifiers that are trained over different
random feature subspaces (i.e., random feature subsets). This
technique is referred to by different names in the literature:
Attribute Bagging (AB), Multiple Feature Subsets, and Random
Subspace Method. The Random Subspace Method is a more
generic term which could refer to: (1) applying Random Sub-
sampling over the training data samples to create bootstrap
subsets of the training dataset, or, (2) applying Random Sub-
sampling over the feature-space to create random subsets of
feature-vectors (used in this work). We prefer to use the term
Attribute Bagging, as it best describes the technique with which
feature subsets are created. In testing, the predictions from each
of the classifiers in the ensemble are combined using a certain
combination rule to produce the final prediction.

1) Motivation to Use Attribute Bagging (AB): The moti-
vation to adopt AB for training the individual classifiers of
the ensemble arises from the following observation. In the
MMR dataset used in this work, the training samples per class
are too few in number when compared to our feature vector
dimensions, which could lead to over-fitting problems for clas-
sifiers such as SVM. For example, while the average number
of training samples per class is 182 in the 80-20 Dataset ver-
sions we make from NTOU-MMR Dataset (See Table III and
Section III), the best performing feature vector length is 2000.
Remember that the feature vector length is equal to the size
of the dictionary used to generate the feature, and that each at-
tribute of the feature vector corresponds to the votes assigned to
the respective dictionary codeword. Employing an ensemble of
classifiers built using AB helps to avoid over-fitting problems.

To avoid the over-fitting issue by reducing the difference
between the number of training data samples and the fea-
ture vector dimensions, random subsets of feature vectors are
created. We do not create random subsets of the training
dataset, but we create random subsets out of training feature
vectors. Moreover, several works in the literature (e.g., [24])
have shown that the AB-based ensemble of classifiers could
perform better than the stand-alone individual classifiers (i.e.,
classifiers trained over whole feature vectors). Motivated by
their findings, we are interested in exploring whether the
AB-based ensemble of multi-class SVM classifiers, hereby
referred to as AB-SVM, trained over BoSURF representations,
could improve the performance of VMMR in comparison to the
single classifier scheme of Section VII-A.

3212 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 11, NOVEMBER 2016

TABLE II
NOMENCLATURE (FOR SYMBOLS USED IN SECTION VII-B)

2) Creating Random Feature Subsets by AB: We will illus-
trate the AB method of creating feature subspaces through a
simple example (see Table II for the definition of symbols).
Assume we have BoSURF feature vectors such as F =
{ax|x = 1, . . . , 10}, where ax is the value of the xth at-
tribute. Let the number of random feature subspaces to cre-
ate be Nss = 4, each comprising of Sss = 5 attributes (or
dimensions). Let Ag denote the set of randomly chosen at-
tribute indices for the gth feature subspace, as described by
Equation (9), where |A| = Sss, and g = 1, . . . , Nss. For exam-
ple, consider A1 = {9, 6, 2, 5, 8}, A2 = {1, 7, 9, 3, 4}, A3 =
{8, 1, 6, 10, 3}, and A4 = {5, 1, 2, 6, 9}. So, out of each orig-
inal feature vector F , we would extract Nss = 4 random
feature subsets based on A1, A2, A3, and A4 respectively,
resulting in the following random feature subsets out of
F : F1 = {a9, a6, a2, a5, a8}, F2 = {a1, a7, a9, a3, a4}, F3 =
{a8, a1, a6, a10, a3}, and F4 = {a5, a1, a2, a6, a9}. We would
then build an ensemble of Nss = 4 classifiers, each trained over
the respective feature subspace

Ag = {x|x ∈ [1, SD]} . (9)

Now, let us generalize the application of AB over our training
dataset. Let Hij be the BoSURF feature vector for a given
image j of class i, comprised of SD attributes:

Hij = {hjk|k = 1, . . . , SD}. (10)

To create each feature subset Hg
ij , we must randomly se-

lect Sss < SD different attributes (without replacement) from
Hij , based on the attribute indices in Ag . Sampling without
replacement ensures that, within a subset, each attribute is
selected only once. However, an attribute could be chosen in
more than one subset. All such feature subsets of class i (i.e.,
Hg

ij), are collected in Hg
i as shown in Equation (11) where the

dimensions of Hg
i are (Ni)× (Sss)

Hg
i =

[
Hg

i1, H
g
i2, . . . , H

g
iNi

]T
. (11)

The classwise pools of feature subsets (Hg
i) for all classes

i = 1, . . . , Nc are then collected in the respective overall
training set for the gth feature subspace (Hg) as shown in
Equation (12):

Hg =
[
Hg

1,H
g
2, . . . ,H

g
Nc

]T
(12)

where each Hg is of dimensionality Ntr × Sss. The feature
subsets in Hg are used to train the corresponding multi-class
classifier Cg . In this way, we achieve an ensemble of classifiers
C (composed of Cg), to predict make and model of a vehicle
in given test images. A greater value for Nss will yield a larger
number of feature subspaces, which would increase the chances
of having qualitatively different Cg , as discussed by [33].

3) Classification: In the testing phase, the BoSURF feature
vector Ht is sub-sampled into subsets Hg

t based on the re-
spective set of attribute indices Ag . To create each subset, the
same sequence of Sss attributes indices (given by Ag) that were
selected in creating Hg are used. The classifier Cg is then used
to predict the label of Hg

t , adding a vote to the winning class.
We employ a majority-voting scheme to combine the outputs of
all the Cg to produce the final prediction of C. The class that
wins the majority of the votes is produced as the predicted make
and model of the test image.

4) Choosing Optimal Parameters: Given that the dimen-
sionality of the BoSURF feature vectors is quite high, if the
number of feature subspaces Nss, and hence the number of
classifiers, is not sufficiently large enough, there could be cases
where some attributes may never be chosen. In the illustrative
example given at the beginning of Section VII-B2, if Nss = 2,
and say we choose the two feature subspaces as per A1 and A2

only, then we see that the 10th attribute is left out. Similarly, if
A1 and A3 are chosen, 4th and 7th attributes would be left out
in the resulting feature subsets. It may occur that the omitted at-
tributes had high discriminative capacity or significance. Based
on the exhaustive experimental evaluations, we have selected
the optimal values for Nss and Sss as explained in Section VIII.

In Fig. 10(a) and (b), we show the effect of feature subspace
sizes (Sss) and the number of feature subspaces (Nss) on the
processing speed and accuracy of BoSURF-SD with AB-SVM.
That is, we have varied Sss from 100 to 1000 (in steps of 100),
for each test with Nss = 10, 15, 20, and 25. It is clear to see
from Fig. 10(a) and (b) that while accuracy tends to increase
with the increase in Sss and Nss, speed tends to decrease. This
is obvious because a higherSss indicates greater dimensionality
of the feature vectors, and a higher Nss represents a greater
number of classifiers in the ensemble, both of which lead to an
increase in processing time consumption.

To find the optimal values of Nss and Sss for BoSURF-SD,
we observe the accuracy vs. speed plot as shown in Fig. 11.
In this figure, we see that for accuracies above 94%, the speed
tends to fall drastically while accuracy improves only slightly
towards 95%. With an objective of achieving a processing speed
of at least 5 fps to meet real-time requirements while having
an accuracy of around 95%, we observe from these figures that
Sss = 500 and Nss = 15 gives an accuracy of 94.5% and speed
of around 5 fps (represented by the highlighted green square
datapoint in Figs. 10(a), (b), and 11). Similar experiments were
conducted for AB-SVM based BoSURF-MD and Nss = 15,
Sss = 1500 yielded the best speed-accuracy trade-off in our
targeted environment, and using the dataset NTOU-MMR, as
defined in Sections III and VIII. So, we adopt the values (Nss =
15, Sss = 500) and (Nss = 15, Sss = 1500) for the AB-SVM
based BoSURF-SD and BoSURF-MD approaches respectively,
in the later experiments (further discussed in Section VIII).

SIDDIQUI et al.: REAL-TIME VMMR BASED ON A BAG OF SURF FEATURES 3213

Fig. 10. Effect of feature subset sizes Sss and number of subsamples Nss on
(a) average correct classification rate and (b) processing speed of BoSURF-
SD with AB-SVM. The computer used to achieve these results is Intel Core i5
3475S CPU (2.94 GHz), with 16-GB RAM.

VIII. EXPERIMENTAL SETUP

In this paper, we propose and investigate unexplored ap-
proaches for real-time automated Vehicle Make and Model
Recognition (VMMR) based on BoSURF and SVMs. The three
main steps in our VMMR approach, as depicted in Fig. 8,
are: (1) Offline Dictionary Building (to be used for Features
Quantization), (2) BoSURF Features Generation and (3) Clas-
sification, which involves classifier training and testing.

The focus of our work, like most related works [2], [3], [5],
[10], [12], [20], etc. is on the use of the front or rear faces of the
vehicles for VMMR. This is based on the observation that the
other regions of the image of a vehicle, such as the hood, wind-
shield, etc. have very little dissimilarity across different makes
and models. Including features from such regions could lead to
classifier confusion and many false positives. In the datasets we
use to prove the effectiveness of our approaches and to compare
against other VMMR works, there are only frontal views of
vehicles (dataset described in Section III). Hence, we will base
our experiments and discussions on vehicle front faces only.

Fig. 11. ACCR versus processing speed of BoSURF-SD with AB-SVM for
different number of subsamples Nss and feature subset sizes Sss. The best
speed–accuracy tradeoff is at Nss = 15 and Sss = 500.

TABLE III
VEHICLE MAKE–MODEL CLASSES AND THE NUMBER OF TRAINING

(#Tr) AND TESTING (#Te) IMAGES IN THE 80-20 DATASETS

However, our approach can be easily applied to datasets having
rear face images as well. In all our experiments, the computing
platform used is an Intel Core i5 3475S CPU (2.94 GHz), with
16 GB RAM, very similar to that used by the works we compare
our results with.

Unlike previous works based on the dataset, we repeatedly
randomly partition the original NTOU-MMR dataset to form
ND number of different training and testing splits for each
class. For each split, 80% of images are randomly chosen for
training, and the remaining 20% for testing. We refer to these
as 80-20 NTOU-MMR Datasets, or simply 80-20 Datasets.
Table III outlines the number of training (#Tr) and testing
(#Te) images in each of the ND datasets. The mean accuracies
and processing speeds of our approaches are determined by
averaging the results over the ND datasets. The 80-20 ratio for
the training and testing split is one of the standard dataset parti-
tioning schemes employed by many works in object recognition
and image classification.

3214 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 11, NOVEMBER 2016

Fig. 12. Effect of varying SD (from 100 to 4000) on accuracy and speed
of BoSURF-SD-based VMMR. SD = 2000 yields the best tradeoff between
speed and accuracy.

A. Optimal Parameters Selection

We obtain the optimal parameters for each step of our
BoSURF MMR approach by cross-validation, using the 80-20
Datasets described in Section III. In the Offline Dictionary
Building step, the significant parameter affecting the process-
ing speed and accuracy of the overall VMMR module is the
Dictionary Size, SD. Varying the SD in the SD scheme from
100 to 4000, we found that SD = 2000 yielded the best trade-
off between speed and accuracy (as shown in Fig. 12). With
SD = 2000, we obtain an accuracy of 95.54% and speed of
7.4 fps. Although a greater SD such as 4000 results in a
higher accuracy (96%), the speed is reduced to 6.7 fps. So, we
choose SD = 2000 in our experiments, unless otherwise stated.
As for the MD scheme, we conducted similar experiments by
varying the size of individual dictionaries (SDi) and found
that the SDi = 100 (which makes the overall MD of size
SD = SDi ·Nc = 100 · 29), yielded the best trade-off between
speed and accuracy (See Fig. 13). Increasing the SDi beyond
100 gradually decreases accuracy and speed. Hence, in our
experiments based on BoSURF-MD, we adopt SDi = 100.

Based on the obtained optimal dictionary sizes, we then find
the optimal classifier parameters. For the Classification step,
we utilize the multi-class SVM library of OpenCV [34] which
is based on LibSVM [31], [35] to build the two classification
approaches proposed in this work. The values C = 50, γ = 5
for the SVMs were empirically determined to yield the best
results. As discussed in Section VII-B, the optimal parameters
to build the Attribute Bagging based ensemble of SVM clas-
sifiers (AB-SVM) are Nss = 15, Sss = 500 for BoSURF-SD,
and Nss = 15, Sss = 1500 for BoSURF-MD.

B. Performance Metrics

In order to be used in real-life scenarios, a good VMMR
system needs to meet real-time processing speed requirements,
apart from being accurate. For the processing speed of a
VMMR approach, we take the inverse of average time taken per
image (in seconds) in extracting features, building the global

Fig. 13. Effect of varying size of individual dictionaries SDi from 20 to 200,
on accuracy and processing speed of BoSURF-MD-based VMMR. At SDi =
100 (and thus the overall size of MD SD = SDi ·Nc = 100 · 29), we obtain
the best trade-off between speed and accuracy.

features representation, and classifying it to predict the MMR
class label. We report the processing speed of the VMMR
approaches in frames-per-second (fps).

Let L = {li|i = 1, 2, . . . , Nc} be the set of labels for all Nc

number of classes in a dataset. The accuracies of the VMMR
approaches can be represented by the following metrics:

• The average classwise accuracies, based on the ratio of
the number of correctly classified images of li to the total
number of test images for li, averaged over ND dataset
splits.

• Mean Average Correct Classification Rate: the overall
VMMR accuracy, a metric similar to [36], which is the
ratio of the total number of correctly classified images
(of all classes) to the total number of test images in the
dataset, averaged over ND different dataset splits.

To visualize the discriminative capabilities of VMMR ap-
proaches, the confusion matrix serves as a good tool. While
the row indices of the matrix correspond to Ground Truth class
labels, the column indices correspond to Predicted class labels.
The value at rth row and cth column, i.e., at (r, c), represents the
percentage of images ofr predicted to be ofclass cby the VMMR
approach. The main diagonal values represent the ACCRcr , i.e.,
at each (r, r), the value is the ACCRcr for Class-r.

The confusion matrix [as shown in Fig. 15(a) and (b)] helps
us identify the classes which could be apparently similar (in the
feature space) and could be leading to inaccurate predictions or
classifications.

IX. RESULTS & DISCUSSIONS

A. Performance of SVM-Based BoSURF-MMR

Using the single multi-class SVM classifier of Section VII-A
(simply referred to as SVM), we investigate the performance
of BoSURF with the two dictionary building schemes pro-
posed to solve the issues in VMMR: Single-Dictionary and
Modular-Dictionary.

SIDDIQUI et al.: REAL-TIME VMMR BASED ON A BAG OF SURF FEATURES 3215

TABLE IV
PERFORMANCE OF OUR BOSURF-MMR WITH SD AND SVM

TABLE V
PERFORMANCE OF OUR BOSURF-MMR WITH MD AND SVM

1) Speed: The average processing speeds of the SD- and
MD-based BoSURF approaches with SVM are 7.5 fps and
6.99 fps respectively, which proves the suitability of BoSURF
for real-time VMMR applications. Higher speeds can be ob-
tained with a slight compromise in accuracy by decreasing
the SD (as previously shown in Figs. 12 and 13). Depending
on the requirements of the specific application, the BoSURF
parameters could be easily adapted to meet high processing
speeds with a slight compromise in accuracy, or vice-versa.
Common surveillance cameras have a frame rate of 25–30 fps
[37], [38]. However, to run the VMMR on each and every
incoming frame would waste computational resources. Instead,
every 5th incoming frame can be processed seamlessly for
VMMR purposes, which effectively requires only 5–6 frames
per second to be processed. In this manner, both of our
BoSURF approaches are highly suitable for real-time VMMR
applications.

2) Accuracy: We show the classwise ACCRci and the av-
erage number of correctly classified images for the BoSURF
approaches based on SD and MD in Tables IV and V, re-
spectively. The accuracies are averaged over ND = 10 random
80-20 training-testing dataset splits.Thedictionary sizesused are
SD = 2000 (for SD) and SD = SDi ·Nc = 100 · 29 (for MD),
as described in Section VIII-A. The mean average correct

Fig. 14. Average, maximum, and minimum classwise ACCRci for BoSURF-
SD-based VMMR, run over the ND = 10 different 80-20 data-set splits.

classification rates (mACCR) of our BoSURF-SD and
BoSURF-MD approaches are 94.84% and 93.7% respectively.
Although the overall performance of BoSURF-SD is superior
to that of BoSURF-MD, we note that BoSURF-MD had better
ACCR for some classes than BoSURF-SD. See for example:
Toyota Camry, Nissan Sentra, Mitsubishi Zinger, Outlander,
Lancer, Ford Liata, and Escape, in Tables IV and V.

Contrary to our expectation that BoSURF-MD would per-
form better than BoSURF-SD, the results indicate otherwise.
One reason could be the fixed size of individual sub-dictionaries
of all classes, which could lead to many less discriminative
and noisy features being selected as codewords in the overall
dictionary. In future, we shall investigate dictionary pruning
methods to build a more robust Modular Dictionary.

The average, minimum and maximum classwise ACCRci

of our SVM based BoSURF-SD approach, over the ND = 10
different 80-20 training-testing dataset versions, are shown in
Fig. 14. Each of the ten dataset versions is populated by ran-
domly choosing 80% of the total images for training and the rest
for testing. While most of the classes have high ACCR, some
classes consistently performed badly even across the 10 differ-
ent dataset versions. These include classes 17 (Nissan Sentra),
18 (Nissan Cefiro), 21 (Mitsubishi Zinger), 22 (Mitsubishi
Outlander), 23 (Mitsubishi Savrin), 26 (Ford Liata), 27 (Ford
Escape), 28 (Ford Mondeo), and 29 (Ford Tierra). In case of
Ford-Liata (Class 26), there were only 3 images for testing, and
16 for training. The low numerical accuracy can be attributed to
the lack of sufficient number of training and testing images.

It is noteworthy to mention that for some classes with low
accuracy, e.g: Class 26, BoSURF-SD had a CCR of around
100% with at least one of the dataset versions (see Fig. 14).
Similarly, for Class 27 (Ford Escape), although the accuracy
(averaged over all ND datasets) turned out to be 79.09%, for
at least one of the 80-20 dataset splits, an ACCRci of more
than 90% was achieved. This clearly indicates that accuracy
greatly depends on how images were distributed into training
and testing. Whereas we assign images to training-testing sets
randomly, the assignment of images into training and testing
sets in the original NTOU-MMR Dataset [5] is not clear and
seems to be biased (described in Section III).

3216 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 11, NOVEMBER 2016

Fig. 15. Confusion matrices for (a) BoSURF-SD and (b) BoSURF-MD,
averaged over the ten 80-20 data sets.

We show the confusion matrix for the 29 make-model classes
using BoSURF-SD and BoSURF-MD approaches in Fig. 15(a)
and (b), respectively. One can observe that most of the in-
accurate classifications are towards Classes 1 (Toyota Altis)
and 2 (Toyota Camry). One of the major reasons for this effect
could be a considerably greater amount of training data avail-
able for these classes (as we can see from Table III) which may
have lead to a biased classifier. Note that the bias mentioned
here is the one caused by large number of training samples for
some classes, while a very small number of training samples
for other classes. By building a more comprehensive dataset
(as mentioned in our future work), we could have a similar
number of images for each class. In this way, the classifier
and dictionary can be expected to be unbiased. Under such
imbalanced training data, even the dictionary could have be-
come biased by retaining more codewords from classes 1 and 2
than from other classes.

Fig. 16. Effect of dictionary size SD on the dictionary training time TDTr ,
for the single and modular dictionaries.

3) Dictionary Training Time: Although the accuracy and
speed of BoSURF-MD VMMR is slightly less than compared
to BoSURF-SD, the time required to build or re-build the MD,
i.e. the Dictionary Training Time (TDTr), is drastically less
than compared to SD’s TDTr. One can observe in Fig. 16 that
there is a huge difference in TDTr for MD and SD. Unlike
SD, the increase in dictionary size does not cause the TDTr

of MD to increase rapidly. The cost in time for training and
re-training of MD is therefore significantly less than that of
SD. In real-life scenarios, security personnel may be looking
for different subsets of vehicle makes and models at different
times. Therefore, a VMMR system should recognize only those
makes and models, rather than all that are passing by. In such
applications where re-building of dictionaries due to addition or
removal of desired or undesired make-model classes is needed,
BoSURF-MD would be a more efficient choice. However,
in applications where the reconstruction of the dictionary is
unnecessary, then BoSURF-SD stands as a better choice.

B. Performance of AB-SVM Based BoSURF-MMR

Motivated by the success of using AB to build an ensemble
of classifiers in several works such as [24], we investigate
whether the AB-based ensemble of multi-class SVM classifiers
(AB-SVM), trained over BoSURF representations of different
makes and models, could improve the performance of VMMR
in comparison to the single classifier scheme of Section VII-A.

The classwise ACCRci and average number of correctly
classified images for AB-SVM based BoSURF-SD and
BoSURF-MD approaches are shown in Tables VI and VII,
respectively. These results are obtained using (Nss = 15,
Sss = 500) for BoSURF-SD, and (Nss = 15, Sss = 1500) for
BoSURF-MD, as obtained in Section VIII-A. The average
processing speed with these configurations was around 5 fps
with SD, and around 3 fps with MD. The average accuracies
turned out to be around 93.02% and 93.68% with SD and MD,
respectively. It can be observed that BoSURF-MD with
AB-SVM had very similar accuracy as BoSURF-MD with
SVM, although processing speed was compromised. However,

SIDDIQUI et al.: REAL-TIME VMMR BASED ON A BAG OF SURF FEATURES 3217

TABLE VI
PERFORMANCE OF OUR BOSURF-MMR WITH SD AND AB-SVM

TABLE VII
PERFORMANCE OF OUR BOSURF-MMR WITH MD AND AB-SVM

TABLE VIII
PERFORMANCE SUMMARY OF OUR BOSURF-MMR APPROACHES

the performance of BoSURF-SD with AB-SVM (in terms of ac-
curacy and speed) is slightly reduced, compared to SVM-based
BoSURF-SD and BoSURF-MD. The reduced performance of
AB-SVM based BoSURF-SD could be attributed to the random
selection of dictionary codewords to form feature subsets, with-
out considering the importance (or discriminative cap-acity) of
the selected codewords. This could have led to the selection
of noisy or non-discriminative codewords. By incorporating
the discriminative capacity of the codewords, or by increasing
Nss (as discussed in Section VIII-A), AB-SVM could perform
better with BoSURF for VMMR.

A summary of mACCR and processing speeds of our
BoSURF-based approaches for VMMR is given in Table VIII.
Based on our findings, we recommend using a single multi-
class SVM-based BoSURF-SD or BoSURF-MD for real-time
VMMR systems, owing to their higher processing speeds and
accuracies.

Fig. 17. Some challenging cases of vehicles under (a)–(h) occlusion, (i) and
(j) partially out of the view of the camera, (k)–(m) nonfrontal views, or (m)–(n)
under low lighting. The BoSURF-based VMMR approaches were successful in
predicting the make–model class in the above cases.

C. Performance in Challenging Conditions

The BoSURF approaches for VMMR perform well even in
challenging scenarios such as vehicles under occlusion, non-
frontal views, and low lighting, as depicted in Fig. 17. The
invariance to such challenging conditions could be attributed
to the sparse nature of BoF-based global representations, in
which the non-zero values are the aggregated votes of similar
keypoint-based patches.

When the vehicle face is under occlusion, there can be two
cases: (a) The occluding object has a relatively texture-less
surface (e.g., a uni-color umbrella), or (b) the occluding object
has a highly varying texture or appearance (e.g., a person). In
the former case, there are little or no keypoint-based patches
(due to scarcity or absence of corners), and hence it doesn’t
affect the overall BoF representation. In the latter case, the
occluding object may also result in keypoint based patches
(due to presence of corners). These occluding patches would
cast votes to the dictionary codewords, thereby adding noise to
the overall BoF representation. There could be two sub-cases
in such a scenario: (a) The occluding patches are very widely
scattered in feature space and hence cast scattered votes (noise
per bin of the BoF histogram is very minimal), or (b) The
occluding patches may be close in feature-space and hence
add a considerable noise to the overall BoF histogram. In the
former sub-case, since the noise is distributed, the overall BoF
histogram’s shape will not be affected considerably. However,
in the latter sub-case, the overall BoF histogram’s shape could
be severely affected, leading to inaccurate predictions.

3218 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 11, NOVEMBER 2016

TABLE IX
PERFORMANCE COMPARISON OF BOSURF-MMR WITH OTHER WORKS

D. Comparisons With Related Works on NTOU-MMR Dataset

The proposed BoSURF approaches for VMMR presented
in this paper outperform several related VMMR works, both
in terms of processing speed and classification accuracy. A
performance comparison of our work with results of other
related works on the NTOU-MMR Dataset is presented in
Table IX. Both of our BoSURF approaches (BoSURF-SD and
BoSURF-MD) significantly outperform the works of [2]–[4].
The work in [4] employs a brute-force matching scheme of the
local SIFT features, making it highly inefficient for real-time
VMMR systems. The approach of [3] results in the worst
performance, due to its reliance on edge pixels to build global
representations of vehicle makes and models, which are prone
to image noises and occlusions, and which lack discriminating
power. The low accuracy in [2] indicates the inefficiency of
Locally Normalized Harris Strengths (LNHS) for the VMMR
problem.

More recently, a sparse representation scheme and a
Hamming Distance-based classification for VMMR was pro-
posed by Chen et. al. [15]. Considering the average accuracy
and speed of their best performing scheme (referred to as
FID-SRC-HDC) on the 29 make-model classes of the
NTOU-MMR Dataset [6], we see in Table IX that our ap-
proaches outperforms research works cited in this Table.
Based on the above comparisons, one can conclude that the
BoSURF-VMMR approaches are superior in terms of both
accuracy and processing speed.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed and evaluated unexplored ap-
proaches for real-time automated vehicle make and model
recognition (VMMR) based on Bag-of-SURF features. The ma-
jor contributions of this work are as follows: (1) Two schemes
for Dictionary Building are studied and evaluated to address
the multiplicity and ambiguity problems of VMMR; (2) The
optimal dictionary sizes for both dictionaries are recommended
via experimental evaluations in the context of VMMR; (3) Two
multi-class classification schemes are proposed and evaluated
for accurate and efficient make-model prediction: (a) Single-
SVM and (b) Attribute Bagging based Ensemble of SVMs
(AB-SVM). The effectiveness and superiority of our ap-
proaches over the state-of-the-art works are validated using ran-
dom training-testing splits of the NTOU-MMR Dataset [5], [6].
Thorough experimental evaluations have shown that our
BoSURF-based VMMR approaches are highly suitable for real-
time vehicle identification applications.

For future work, we plan to enhance BoSURF-VMMR ap-
proaches by exploring dictionary pruning methods. Necessi-
tated by the lack of a standard publicly available benchmark
dataset for VMMR works, we plan to build a comprehen-
sive VMMR dataset that exhibits the real-world challenges in
VMMR and includes a wider variety of colors, makes and
models. We shall also explore developing a real-time on-device
mobile VMMR system.

REFERENCES

[1] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in Proc. 9th IEEE Int. Conf. Comput. Vis.,
Oct. 2003, vol. 2, pp. 1470–1477.

[2] G. Pearce and N. Pears, “Automatic make and model recognition from
frontal images of cars,” in Proc. 8th IEEE Int. Conf. AVSS, Aug. 2011,
pp. 373–378.

[3] D. T. Munroe and M. G. Madden, “Multi-class and single-class classifica-
tion approaches to vehicle model recognition from images,” in Proc. 16th
Irish Conf. Artif. Intell. Cogn. Sci., Sep. 2005, pp. 93–104.

[4] L. Dlagnekov, “Video-based car surveillance: License plate, make,
and model recognition,” M.S. thesis, Dept. Comput. Sci. Eng., Univ.
California, San Diego, San Diego, CA, USA, 2005.

[5] J.-W. Hsieh, L.-C. Chen, and D.-Y. Chen, “Symmetrical SURF and its ap-
plications to vehicle detection and vehicle make and model recognition,”
IEEE Trans. Intell. Transp. Syst., vol. 15, no. 1, pp. 6–20, Feb. 2014.

[6] NTOU-MMR Dataset. [Online]. Available: http://mmplab.cs.ntou.edu.tw/
mmplab/MMR/MMR.html

[7] A. Mammeri, E.-H. Khiari, and A. Boukerche, “Road-sign text recog-
nition architecture for intelligent transportation systems,” in Proc. 80th
IEEE VTC Fall, Sep. 2014, pp. 1–5.

[8] S. Sivaraman and M. Trivedi, “Looking at vehicles on the road: A survey
of vision-based vehicle detection, tracking, and behavior analysis,” IEEE
Trans. Intell. Transp. Syst., vol. 14, no. 4, pp. 1773–1795, Dec. 2013.

[9] D. Lowe, “Object recognition from local scale-invariant features,” in
Proc. 7th IEEE Int. Conf. Comput. Vis., 1999, vol. 2, pp. 1150–1157.

[10] R. Baran, A. Glowacz, and A. Matiolanski, “The efficient real- and non-
real-time make and model recognition of cars,” Multimedia Tools Appl.,
vol. 74, no. 12, pp. 4269–4288, Jun. 2013.

[11] P. Badura and M. Skotnicka, “Automatic car make recognition in low-
quality images,” in Information Technologies in Biomedicine, vol. 3,
ser. Advances in Intelligent Systems and Computing, E. Pitka, J. Kawa,
and W. Wieclawek, Eds. Springer-Verlag, 2014, vol. 283, pp. 235–246.

[12] M. Fraz, E. A. Edirisinghe, and M. S. Sarfraz, “Mid-level-representation
based lexicon for vehicle make and model recognition,” in Proc. 22nd
ICPR, Aug. 2014, pp. 393–398.

[13] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust features
(SURF),” Comput. Vis. Image Understand., vol. 110, no. 3, pp. 346–359,
Jun. 2008.

[14] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2005,
vol. 1, pp. 886–893.

[15] L.-C. Chen, J.-W. Hsieh, Y. Yan, and D.-Y. Chen, “Vehicle make and
model recognition using sparse representation and symmetrical SURFs,”
Pattern Recognit., vol. 48, no. 6, pp. 1979–1998, Jun. 2015.

[16] H. He, Z. Shao, and J. Tan, “Recognition of car makes and models from
a single traffic-camera image,” IEEE Trans. Intell. Transp. Syst., vol. 16,
no. 6, pp. 3182–3192, Dec. 2015.

[17] P. Salembier and T. Sikora, Introduction to MPEG-7: Multimedia Content
Description Interface, B. Manjunath, Ed. New York, NY, USA: Wiley,
2002.

[18] D. K. Park, Y. S. Jeon, and C. S. Won, “Efficient use of local
edge histogram descriptor,” in Proc. ACM Workshops MULTIMEDIA,
Los Angeles, CA, USA, 2000, pp. 51–54.

[19] V. Varjas and A. Tanacs, “Car recognition from frontal images in mobile
environment,” in Proc. 8th Int. Symp. ISPA, Sep. 2013, pp. 819–823.

[20] L.-C. Chen, J.-W. Hsieh, Y. Yan, and D.-Y. Chen, “Vehicle make
and model recognition using sparse representation and symmetrical
SURFs,” in Proc. IEEE 16th Int. Conf. Intell. Transp. Syst., Oct. 2013,
pp. 1143–1148.

[21] D. Llorca, D. Colas, I. Daza, I. Parra, and M. Sotelo, “Vehicle model
recognition using geometry and appearance of car emblems from rear
view images,” in Proc. 17th IEEE Int. Conf. Intell. Transp. Syst.,
Oct. 2014, pp. 3094–3099.

SIDDIQUI et al.: REAL-TIME VMMR BASED ON A BAG OF SURF FEATURES 3219

[22] The Industrial Liaison Program of VBIE. [Online]. Available: http://vbie.
eic.nctu.edu.tw/en/introduction

[23] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Proc. ECCV Workshop Stat.
Learn. Comput. Vis., 2004, pp. 1–22.

[24] L. Nanni and A. Lumini, “Heterogeneous bag-of-features for object/scene
recognition,” Appl. Soft Comput., vol. 13, no. 4, pp. 2171–2178,
Apr. 2013.

[25] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman, “Blocks that shout:
Distinctive parts for scene classification,” in Proc. IEEE CVPR, Jun. 2013,
pp. 923–930.

[26] P. Pinto, A. Tome, and V. Santos, “Visual detection of vehicles using a
bag-of-features approach,” in Proc. 13th Int. Conf. Auton. Robot Syst.
Robotica, Apr. 2013, pp. 1–4.

[27] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 2006, vol. 2, pp. 2169–2178.

[28] S. Singh, S. Choudhury, K. Vishal, and C. Jawahar, “Currency recognition
on mobile phones,” in Proc. 22nd ICPR, Aug. 2014, pp. 2661–2666.

[29] L. Hazelhoff, I. Creusen, and P. de With, “Optimal performance-efficiency
trade-off for bag of words classification of road signs,” in Proc. 22nd
ICPR, Aug. 2014, pp. 2996–3001.

[30] Y.-G. Jiang, C.-W. Ngo, and J. Yang, “Towards optimal bag-of-features
for object categorization and semantic video retrieval,” in Proc. 6th ACM
Int. CIVR, 2007, pp. 494–501.

[31] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining Knowl. Discov., vol. 2, no. 2, pp. 121–167,
Jun. 1998.

[32] V. N. Vapnik, The Nature of Statistical Learning Theory. New York,
NY, USA: Springer-Verlag, 1995.

[33] R. Bryll, R. Gutierrez-Osuna, and F. Quek, “Attribute bagging: Improving
accuracy of classifier ensembles by using random feature subsets,” Pattern
Recognit., vol. 36, no. 6, pp. 1291–1302, Jun. 2003.

[34] Support Vector Machines Implementation. [Online]. Available: http://
docs.opencv.org/modules/ml/doc/support_vector_machines.html

[35] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector ma-
chines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 27:1–27:27,
Apr. 2011.

[36] L. Hazelhoff, I. Creusen, D. van de Wouw, and P. H. N. de With, “Large-
scale classification of traffic signs under real-world conditions,” in Proc.
SPIE Multimedia Mobile Devices Multimedia Content Access, Algorithms
Syst., 2012, vol. 8304, pp. 1–10.

[37] CCTV Camera Pros. [Online]. Available: http://www.cctvcamerapros.
com/

[38] Security Camera Warehouse (SCW). [Online]. Available: https://www.
security-camera-warehouse.com/ip-camera/

Abdul Jabbar Siddiqui received the M.A.Sc. de-
gree from University of Ottawa, Ottawa, ON,
Canada, in 2015. He is currently working toward the
Ph.D. degree in electrical and computer engineering
with University of Ottawa.

His research interests include intelligent sur-
veillance systems, mobile computer vision, multi-
media retrieval, intelligent transportation systems,
advanced driver assistance systems, vehicular ad hoc
networks, and smart city applications.

Abdelhamid Mammeri received the M.Sc. degree
in electrical and computer engineering from Uni-
versité Catholique de Louvain, Louvain-la-Neuve,
Belgium, and the Ph.D. degree in electrical and com-
puter engineering from Université de Sherbrooke,
Sherbrooke, QC, Canada.

He is a Senior Research Associate with DIVA
Strategic Research Network, University of Ottawa,
Ottawa, ON, Canada. He has extensively published
in top-tier international conferences and journals in
areas of his research interests, which include intel-

ligent transportation systems, advanced driver assistance systems, vehicular
ad-hoc networks, and multimedia sensor networks.

Dr. Mammeri has served as a Technical Program Committee (TPC) Chair
and a Track Chair for IEEE Vehicular Technology Conference in 2014, IEEE
International Workshop on Performance and Management of Wireless and
Mobile Networks in 2013 and 2015, and the IFIP International Conference
on New Technologies, Mobility and Security in 2015. He has also served as a
TPC member for several IEEE/ACM international conferences. He received the
prestigious Fonds de recherche du Quebéc—Nature et technologies (FQRNT)
Quebec PostDoctoral Scholarship Award in 2012.

Azzedine Boukerche (F’15) held a faculty position
with University of North Texas, Denton, TX, USA.
He worked as a Senior Scientist with the Simulation
Sciences Division, Metron Corporation, San Diego,
CA, USA. He is currently a Full Professor and holds
the Senior Canada Research Chair Tier 1 position
with University of Ottawa, Ottawa, ON, Canada. He
is also the Scientific Director of the Natural Sciences
and Engineering Research Council (NSERC) DIVA
Strategic Research Network and NSERC-CREATE
TRANSIT Network and the Director of PARADISE

Research Laboratory with University of Ottawa. He spent a year at the NASA
Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena,
CA, USA, where he contributed to a project on the specification and verifi-
cation of the software used to control interplanetary spacecraft operated by
NASA JPL.

Dr. Boukerche has served as a Steering Committee Chair for several IEEE
and Association for Computing Machinery (ACM) international conferences.
He currently serves as an Associate Editor for several IEEE Transactions and
ACM journals. He received the Ontario Distinguished Researcher Award, the
Premier of Ontario Research Excellence Award, the G. S. Glinski Award for
Excellence in Research, the IEEE Computer Society Golden Core Award, the
IEEE Computer Society (CS) Meritorious Award, the University of Ottawa
Award for Excellence in Research, the IEEE Canada Gotlieb Medal Award, the
IEEE CS Technical Committee on Parallel Processing Leaderships Award, and
the IEEE Communication Society AHSN Leaderships Award. He is a Fellow
of the Engineering Institute of Canada, the Canadian Academy of Engineering,
and the American Association for the Advancement of Science.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

